

F R U I T STARCH S U G A R

The natural upgrade

ActiBeet[®] – natural betaine for efficient livestock production

AGENDA

ActiBeet[®] - Natural Betaine

2 AGRANA R&D Activities and Trials

5

- Strategies & Dosage Recommendations
- 4 Natura
 - Natural versus Synthetic Betaine
 - Challenges and New Perspectives

PRODUCTION SITE

PRODUCTION SITE IN TULLN

ACTIBET (R)

- ✓ a natural source of Betaine
- ✓ a GMO-free product, obtained from sugar beets
- ✓ certified: ISO9001:2015, GMP+ and GMO- free

COMMISSION IMPLEMENTING REGULATION (EU) 2019/2164 of 17 December 2019

'betaine anhydrous' for monogastric animals and only from natural or organic origin comply with the objectives and principles of organic production".

- min. 96% Betaine activity
- Betaine anhydrous
- Crystalline
- Free flowing

OUR PRODUCTS?

Å ActiBeet®

Package size: 20 kg PE bags + Big Bags

Certified: ISO9001:2015, GMP+ and GMO-free

ACTIBEET PRODUCTS CERTIFICATES AND STATEMENTS **ActiBeet**®

- ✓ ISO 9001 Certificate
- ✓ GMP+ FSA assured Certificate
- ✓ GMO free Certificate
- ✓ Halal
- ✓ Kosher
- ✓ Free Sale Certificate
- ✓ Health Certificate
- ✓ Non-Animal Origin Certificate
- $\checkmark\,$ Declaration of non irradiation, non ionization, non solvent
- ✓ Statement of organic authorization for ActiBeet 97
- ✓ Statement of absence of nanoparticles
- ✓ Statement of absence TSE/BSE risk

ACTIBET (R)

ACTIBEET® – NATURAL SOURCE OF BETAINE

Betaine or trimethylglicine (TMG)

 First discovered in the juice of sugar beets (*Beta vulgaris*) -19th century

 Present also in other plants, animals and microorganisms

Betaine or trimethylglicine (TMG) (CH₃)₃N⁺CH2COO ⁻

INTRODUCTION

... has two main physiological functions:

1	Methyl group donor
2	Organic osmolyte

Betaine or trimethylglicine (TMG) (CH₃)₃N⁺CH2COO ⁻

INTRODUCTION

... has two main physiological functions:

Methyl group donor

Organic osmolyte

BETAINE OR TRIMETHYLGLICINE

1. Betaine as an efficient methyl group donor: is a catabolic source of methyl groups via transmethylation, for use in many biochemical pathways:

in the homocysteine - methionine cycle

supports the synthesis of metabolically active substances

works as a lipotropic agent

source of glycine- relevant in N- reduced feeding

- glycine, is one of the amino acids present in the bile salts. One of its functions is to produce uric acid to eliminate the excess of nitrogen from the body via the urine

FUNCTIONS OF LIVER- MITOCHONDRIA

THE ROLE OF BETAINE AS A METHYL GROUP DONOR

ActiBeet[®] – natural betaine

THE ROLE OF BETAINE AS A METHYL GROUP DONOR

Methionine

Protein biosynthesis

THE ROLE OF BETAINE AS A METHYL DONOR

Choline

Acetylcholine-Neurotransmission

THE ROLE OF BETAINE AS A METHYL GROUP DONOR

Diet

Betaine or trimethylglicine (TMG) $(CH_3)_3N^+CH2COO^-$

INTRODUCTION

... has two main physiological functions:

Methyl group donor

Organic osmolyte

BETAINE OR TRIMETHYLGLICINE

ACTIBEET[®] – ORGANIC OSMOLYTE

Osmoregulation:

The ability of a cell to maintain its structure and function by regulating movement of water in and out of the cell

Betaine as an osmoprotectant in the osmoregulation:

Betaine

CHALLENGES OF HYPEROSMOTIC STRESS

BETAINE OR TRIMETHYLGLICINE

ACTIBEET[®] – NATURAL SOURCE OF BETAINE

- 2. Organic osmolyte osmoprotector
- Sustains the mineral and water balance, helps to maintain cell volume without disrupting normal functions, prevents dehydration (*Klasing et al., 2002*)
- Betaine increases the surface for nutrient absorption
- Highly compatible with cellular enzyme function, protects cellular enzymes and membranes against osmotic inactivation
- Promotes energy efficient osmoregulation

without support

with ActiBeet®

reduced cell volume

regular cell volume

without support

with ActiBeet®

intestinal villi

intestinal villi

BETAINE OR TRIMETHYLGLICINE

ACTIBEET[®] – NATURAL SOURCE OF BETAINE

1. Methyl group donor & 2. Organic osmolyte

Supports animals in challenging conditions:

heat stress, temperature stress, coccidial challenge...

It helps to increase performance and carcass quality, as well the efficiency for producers

NATURAL BETAINE TRIALS

(1) Schothorst Feed Research 2014-2015

"The effect of four betaine products on replacing methionine and choline supplementation on growth performance in broiler chickens from 10 to 28 days of age"

(2) NKP FARM 2016, Thailand

"Comparing the effects of different methyl group donors on the carcass quality of broilers in challenged conditions and the effect on the litter quality, from 0 to 38 days of age"

(3) Schothorst Feed Research 2016

"The effect of betaine and crude protein level on performance responses of broiler chickens, from 0 to 21 days of age"

(1) Schothorst Feed Research 2014-2015

"The effect of four betaine products on replacing methionine and choline supplementation on growth performance in broiler chickens from 10 to 28 days of age"

(2) NKP FARM 2016

"Comparing the effects of different methyl group donors on the carcass quality of broilers in challenged conditions and the effect on the litter quality, from 0 to 38 days of age"

(3) Schothorst Feed Research 2016

"The effect of betaine and crude protein level on performance responses of broiler chickens, from 0 to 21 days of age"

R & D - TRIALS SCHOTHORST FEED RESEARCH (SFR)

Research title:

"The effect of four betaine products on replacing methionine and choline supplementation on growth performance in broiler chickens from 10 to 28 days of age"

Conducted by:

- P. Agostini, PhD-Schothorst Feed Research B.V.,
- DI Barbara Auer-Agrana Stärke GmbH,
- W. van Hofstraeten-Schothorst Feed Research B.V.,
- L. de Lange, MSc -Schothorst Feed Research B.V

SCHOTHORST FEED RESEARCH (SFR)

- 1. What is the effect of BET in diets deficient in methionine and choline on productive performance of broilers during the grower phase (d 10–28)?
- 2. Can the quality of AGRANA BET products compete with other BET products?

SCHOTHORST FEED RESEARCH (SFR)

TEST PRODUCTS

Test products	AGRANA natural Betaine dry product	AGRANA natural Betaine liquid product	Crystallized natural Betaine product	Crystallized synthetic Betaine product
Producer	AGRANA Zucker	AGRANA Zucker		
Active ingredients	Product A Dry Natural Betaine - ActiBeet [®] VC	Product B Betaine liquid- ActiBeet [®] L	Product C Betaine anhydrous	Product D Betaine hydrochloride
% of active ingredients	40%	40%	96%	70,7%

SCHOTHORST FEED RESEARCH (SFR)

MATERIAL AND METHODS

Animal and housing

- 840 Ross 308 broilers
- Males and females (split sexes)
- 42 pens (2 m²)
- 7 treatments * 3 replications x 2 sexes * 20 broilers *
- Broilers arrival date > December 30th, 2014

MATERIAL AND METHODS

T1: no added MET and CHOL \rightarrow d. M+C/d. Lys ratio = 0.63 (-10% of standard)

T2: T1 + 0.7 g/kg of MET from DL-MET \rightarrow d. M+C/d. Lys ratio = 0.70 (at standard)

T3: T1 + 0.7 g/kg CHOL from choline chloride – synthetic

- **T4:** T1 + 0.7 g/kg BET from ActiBeet[®] VC natural dry product
- **T5:** T1 + 0.7 g/kg BET from ActiBeet[®] L natural liquid
- **T6:** T1 + 0.7 g/kg BET from Product C natural crystallized
- **T7:** T1 + 0.7 g/kg BET from Product D synthetic crystallized

RESULTS

						d 10-28	8	
Description	d. M+C (g/kg)	d. Lys (g/kg)	d.M+C/ d. Lys ratio	BWG (g)		FI (g)		FCR (g/g)
Treatment effect								
NC	6.72	10.73	0.63	1303	A	1867		1.433 c
NC + MET (DL-Methionine)	7.42	10.73	0.70	1353	В	1884		1.393 a
NC + CHOL (choline chloride)	6.72	10.73	0.63	1308	A	1856		1.419 bc
NC + BET (ActiBeet [®] VC)	6.72	10.73	0.63	1342	AB	1865		1.390 a
NC + BET (ActiBeet [®] L)	6.72	10.73	0.63	(1363	В	1905		(1.399 a)
NC + BET (Product C)	6.72	10.73	0.63	1351	В	1889		1.398 ab
NC + BET (Product D)	6.72	10.73	0.63	1336	AB	1885		1.412 abc
Lsd				42		48		0.025
P-value				0.07		0.47		0.02
Sex effect Females				1254	а	1763	a	1.407
Males				1419	b	1994	b	1.406
Lsd				40		45		0.023
P-value				< 0.001		< 0.001		0.34

Lsd: least significant difference.

^{a-c} Values without a common superscript within a column differ significantly ($P \le 0.05$). ^{A-B} Values without a common superscript within a column tend to differ significantly ($0.05 \le P < 0.10$).

- ✓ The negative control diet was limiting in methionine supply
- The addition of 700 ppm betaine from ActiBeet® VC, ActiBeet® L or Product C- natural betaine were able to fully replace equal amount of added methionine in the grower
 broiler diet (d 10-28) when its d. M+C / d. Lys ratio was decreased by 10%, from 0,7 (d. M+C = 7.42 g/kg and d. Lys = 10.73 g/kg) to 0,63 (d. M+C = 6.72 g/kg and d. Lys = 10.73 g/kg).
- ✓ The addition of 700 ppm choline in a methionine deficient grower diet was not able to replace equal amount of added methionine.

NATURAL BETAINE OVERVIEW TRIALS

(1) Schothorst Feed Research 2014

"The effect of four betaine products on replacing methionine and choline supplementation on growth performance in broiler chickens from 10 to 28 days of age"

(2) NKP FARM 2016, Thailand

"Comparing the effects of different methyl group donors on the carcass quality of broilers in challenged conditions and the effect on the litter quality, from 0 to 38 days of age"

(3) Schothorst Feed Research 2016

"The effect of betaine and crude protein level on performance responses of broiler chickens, from 0 to 21 days of age"

R & D - TRIALS

TRIAL CONDUCTED AT NKP FARM, THAILAND

Research title:

"Comparing the effects of different methyl group donors on the carcass quality of broilers in challenged conditions and the effect on the litter quality, from 0 to 38 days of age"

Conducted by:

- Saksit Srinongkote, Animal research consultant,
- Barbara Auer, Agrana Stärke GmbH,
- Ana Gavrău, Agrana Stärke GmbH,

- To compare the effects of two betaine products vs. choline chloride, in broilers fed low energy diet from newly hatched to 38 days of age in challenged heat stress condition
- 2. What is the effect of test products on the litter quality?
- **3.** Can the AGRANA product compete with the test products?

MATERIAL AND METHODS

Animal and housing

- 400 Ross 308 broilers
- newly hatched males
- 40 pens (1 m²)
- 5 treatments * 8 replications * 10 broilers
- Trial period (MAR 2 APR 9, 2016)

TEST PRODUCTS

Test products	AGRANA natural Betaine liquid product	Crystallized natural Betaine product	Crystallized synthetic Choline chloride product
Producer	AGRANA Zucker		
Active ingredients	Test product BET1 Betaine liquid-ActiBeet [®] L	Test product BET2 Betaine anhydrous	Test product CHOL3 Choline chloride
% of active ingredients	40%	96%	50%

Diet 1: Positive control (PC) practical corn-SBM diet, according to Ross 308 nutritional guideline,

Diet 2: Negative control (NC) as diet 1, but with lower ME by 100 kcal/kg,

Diet 3: NC + Test betaine product 1 BET1 – ActiBeet[®] L 40% (liquid, natural source of betaine- AGRANA)

Diet 4: NC + Test betaine product 2 BET2 – crystallised, natural betaine product 96%,

Diet 5: NC + Test product 3 CHOL3 – choline chloride 50%, synthetic product.

RESULTS

 Table 1. Effect of different methyl donor products on carcass traits of broilers (38 day of age)

Trootmont group	Breast	Thigh	Drum	Abdominal
Treatment group	meat		stick	fat
	(%)	(%)	(%)	(%)
T1 : PC diet	27.12	16.47	13.25	2.49
T2 : NC diet (-100 kcal ME/ kg)	26.43	16.90	13.83	2.45
T3 : NC + BET1	27.74	16.15	13.38	2.44
T4 : NC + BET2	27.12	16.44	13.49	2.46
T5 : NC + CHOL3	27.09	17.00	13.29	2.58
P-value	0.5359	0.2536	0.1236	0.9948
Pooled SEM	0.520	0.295	0.163	0.046
C.V.%	5.42	5.03	3.42	7.04
			•	-

RESULTS

Trootmont group	Litter	Litter	Litter
Treatment group	Score ¹	DM	Moisture
	(score)	(%)	(%)
T1 : PC diet	1.75	74.70	25.30
T2 : NC diet (-100 kcal ME/ kg)	1.69	74.93	25.07
T3 : NC + BET1	1.44	78.36	21.64
T4 : NC + BET2	1.38	78.07	21.93
T5 : NC + CHOL3	1.56	76.84	23.16
P-value	0.5339	0.5115	0.5175
Pooled SEM	0.178	1.874	1.871
C.V.%	32.20	6.92	22.57

Why is litter quality of importance?

RESULTS

- Gut health and litter quality are directly linked
- Wet litter can lead to further complications
- Relevant to bird welfare

Why is litter quality of importance?

RESULTS

Dry litter

• Wet litter

- ✓ Despite lower ME, improvement in breast meat yield and lower abdominal fat content were observed by supplementing natural betaine products (table 1).
- ✓ All methyl donor products could improve litter quality by reducing the score of visual litter assessment and litter's moisture content; better results were achieved with ActiBeet[®] L showing the lowest moisture content in the litter!

(1) Schothorst Feed Research 2014

"The effect of four betaine products on replacing methionine and choline supplementation on growth performance in broiler chickens from 10 to 28 days of age"

(2) NKP FARM 2016

"Comparing the effects of different methyl group donors on the carcass quality of broilers in challenged conditions and the effect on the litter quality, from 0 to 38 days of age"

(3) Schothorst Feed Research 2016

"The effect of betaine and crude protein level on performance responses of broiler chickens, from 0 to 21 days of age"

R & D - TRIALS SCHOTHORST FEED RESEARCH (SFR)

Research title:

"The effect of betaine and crude protein level on performance responses of broiler chickens, from 0 to 21 days of age"

Conducted by:

- P. Agostini, PhD, Schothorst Feed Research B.V.,
- DI Barbara Auer, AGRANA Stärke GmbH,
- Ana Gavrău (MSc), AGRANA Stärke GmbH,

R & D - TRIALS

SCHOTHORST FEED RESEARCH (SFR)

Non-essential, but important!

Even though glycine is considered a non-essential amino acid (NEAA), it became an important issue in the last years due to the reduction of crude protein (CP) content in diets for monogastric animals. When CP is reduced more than 3%, glycine and serine levels can decrease drastically which can result in lower performance responses (Ospinas-Rojas *et al.* 2013).

R & D - TRIALS

SCHOTHORST FEED RESEARCH (SFR)

Glycine multi-functionalities in nitrogen, amino acid and energy metabolism (adapted from Akinde, 2004):

As precursors and co-substrates	End products/biosynthetic pathways
1) Nitrogen and energy metabolism	
Glycine	An inhibitory transmitter within the amino acidergic neurotransmitter system
Glycine, serine and methionine	Methyl group traffication
Glycine in hormonal syntheses	Synthesis of steroids- e.g. cortisone-like, androgenic and estrogenic hormones
Glycine	Sarcosine
Glycine, glutamine and aspartate	Uric acid (a purine)
Glycine	Glucogenic amino acid, feeding into the citric acid cycle via serine and then pyruvate
Glycine, arginine, methionine/betaine	Creatine
Glycine and taurine	Bile acids
Glycine, cysteine and glutamate	Glutathione
Glycine, glutamate & aspartate	Nucleic acid bases (DNA, RNA) and purines
2) Amino acid metabolism	
Glycine	Collagen, keratin, elastin
Glycine	Serine
Glycine	Threonine catabolism
Glycine and serine	Methionine & cysteine biosynthesis
Glycine, serine and threonine	Glycosylated proteins in mucins

OBJECTIVES

 The trial aimed to determine the effect of BET supplementation in diets with mid-low CP and glycine levels, on productive performance of broiler chickens from day 0-21 of age.

TEST PRODUCTS

Test products	AGRANA- natural Betaine liquid product	AGRANA- natural Betaine dry product	AGRANA- natural Betaine dry product
Producer	AGRANA Zucker	AGRANA Zucker/ ARIC	AGRANA Zucker/ ARIC
Active ingredients	ActiBeet [®] L liquid	ActiBeet [®] VC complementary feed	ActiBeet [®] SD spraydried
% of active ingredients	40%	40%	50%

MATERIAL AND METHODS

Animal and housing

- 480 one-d-old Ross 308
- male broilers
- 24 pens (2 m²)
- 4 treatments * 6 replications * 20 broilers
- Broilers arrival date: May 9th, 2016

MATERIAL AND METHODS

Experimental treatments:

			Starter p	ohase (day 0	-7)	
Treatment	N Crude	ML Crude	d. M+C/	N d. G+S ²	ML d. G+S ²	Betaine ³ -
	protein (%)	protein (%)	u. Lys	(g/kg)	(g/kg)	700 ррпл/ ку
1	22.3	21	0.7	17.23	15.90	No (Control)
2	22.3	21	0.7	17.23	15.90	ActiBeet L
3	22.3	21	0.7	17.23	15.90	ActiBeet VC
4	22.3	21	0.7	17.23	15.90	ActiBeet SD
			Grower p	hase (day 7-	21)	
Treatment	N Crude	ML Crude	d. M+C/	N d. $G+S^2$	d. $G+S^2$	Betaine ³ -
	protein ¹ (%)	protein (%)	d. Lys	(g/kg)	(g/kg)	600 ppm/ kg
1	21.5	20.2	0.7	16.64	15.28	No (Control)
2	21.5	20.2	0.7	16.64	15.28	ActiBeet L
3	21.5	20.2	0.7	16.64	15.28	ActiBeet VC
4	21.5	20.2	0.7	16.64	15.28	ActiBeet SD

¹ Crude protein level was reduced by around 5-6%, keeping the essential amino acids at normal levels; **d.M+C/ d.Lysin ratio** was the same in both **0,7**

² Digestible glycine + serine level was reduced by around 7-8%;

³ 700 and 600 ppm of active betaine was added in the starter and grower diets, respectively.

MATERIAL AND METHODS

Experimental treatments:

N CP – normal crude protein levels ML CP – mid-low crude protein levels Digestible glycine + serine levels in the starter and grower phase

RESULTS

Figure 1. Body weight gain (BWG) of broilers from day 0-21 of age fed diets low in crude protein with different betaine products.

Figure 2. Feed conversion ratio (FCR) of broilers from day 0-21 of age fed diets low in crude protein with different betaine products.

✓ A significant effect for BWG and FCR was observed from day 0-21 of age. Diets containing either ActiBeet
 L, ActiBeet VC or ActiBeet SD resulted in higher BWG and better FCR compared with the diet without BET.

The use of betaine in diets with:

- > mid-low CP and lower glycine plus serine levels,
- Iow levels of choline and
- > with normal levels of essential amino acids,

can improve performance of broilers up to day 21 of age.

DOSAGE RECOMMENDATION

Ó ActiBeet®

STANDARD DOSAGE RECOMMENDATION: 1 kg/t (0,1%) of finished feed

STRATEGIC DOSAGE RECOMMENDATION:

For hot climate, heat stress or other challenging conditions:*	Inclusion rate in kg/t of finished feed	Nutritional value of betaine in mg/kg of finished feed
ActiBeet®	1-1.5	1000-1400

** as reference please see AGRANA Trial conducted in Thailand. For detailed information, please contact AGRANA.

DOSAGE RECOMMENDATION

STRATEGIC DOSAGE RECOMMENDATION:

POULTRY

For choline replacement (from For removal of total added choline ch	choline chloride) oride:**	Inclusion rate in kg/t of finished feed	Nutritional value of betaine in mg/kg of finished feed
Broiler starter	ActiBeet®	0.50	480
Broiler grower	ActiBeet®	0.35	330
Broiler finisher	ActiBeet®	0.25	240
Broiler breeder	ActiBeet®	0.25-0.50	240-480
Layer breeder	ActiBeet®	0.25-0.35	240-330
Commercial Layer	ActiBeet®	0.25	240
Turkey	ActiBeet®	0.55	530
Turkey breeder	ActiBeet®	0.65–0,85	620-810

*) For detailed information, please contact AGRANA.

DOSAGE RECOMMENDATION

POULTRY

For cholinechloride replacement	Replacement of Cholinechloride by ActiBeet [®]	Inclusion rate in kg/t of finished feed	Nutritional value of betaine in mg/kg of finished feed
ActiBeet [®] 96%	ActiBeet: Choline chloride	1.00	960
Cholinechloride 50%	0,36 : 1,50 (1:4)	0,36	347
Cholinechloride 60%	0,36 : 1.25 (1:3.5)	0,36	347
Cholinechloride 75%	0,36 : 1.00 (1:2,77)	0,36	347

Coefficient of equivalence:

1 mg Betaine= 2,16 mg Choline; for e.g. 347 mg Betaine= 749,52 mg Choline

		Dosage / 100kg	Dosage / 1000kg		Dosage / 1000kg	
Choline chloride	50	0,150	1,50	750	1,20	600
Choline chloride	60	0,125	1,25	750	1,00	600
Choline chloride	75	0,100	1,00	750	0,80	600
ActiBeet®	96	0,036	0,36	347	0,29	278

Coefficient of equivalence:

1 mg Betaine= 2,16 mg Choline; for e.g. 347 mg Betaine= 749,52 mg Choline

Why?

Chemical equivalence between choline chloride and betaine:

139.6 / 117.15 = 1.1916

Correction considering the bioeffectiveness of choline compared to betaine is approx. 55%; (*Result of the study of Saarinen et al. 2001:" dietary betaine is nearly twice as efficient as the same mole equivalent level of choline for increasing liver betaine levels"*)

1.1916 / 0.55 = 2.167

DOSAGE RECOMMENDATION

Total Choline level in the feed according to the ROSS 308 nutritional guide:					
MINIMUM SPECIFIC	ATION	(management			
Choline per kg	mg	1700	1600	1550	
Linoleic Acid	%	1.25	1.20	1.00	

Vitamin Bioavailability (source DSM):

"Bioavailability of choline, niacin and vitamin B6 is adequate in some feeds but limited or variable in others. For example, bioavailability of choline is 100% in corn but varies from 60 to 75% in soybean meal".

Analysis results* on native Choline level in raw materials:

Feed materials	native Choline content expected in mg/ kg	native Choline content analysed in mg/ kg	Bioavailability 50% (average)	Feed composition e.g.	total native choline in mg/ kg	Min. total bioavailable native choline in mg/ kg
Rapeseed meal_404427	6500	5280	2640	9,5	501,6	250,8
Sunflower meal_401842	3500	2390	1195	8	191,2	95,6
DDGS_404466	2500	3780	1890	10	378	189
SBM_404743	2600	2640	1320	22	580,8	290,4
Wheat_404791	1000	1320	660	10	132	66
Corn_404037	500	632	316	40	252,8	126,4
				99,5	2036,4	1018,2
			Premix 0,5%	0,5		
				100		

* LUFA Nord-West - Institut für Futtermittel - Jägerstraße 23-27 - 26121 Oldenburg

For methionine sparing effect:***	Inclusion rate in kg/t of finished feed	Nutritional value of betaine in mg/kg of finished feed	
ActiBeet®	0.75	720	

- as reference please see AGRANA Trial in Schothorst; for detailed information please contact AGRANA;
- please consider that a min. of 6.5 g/kg feed, the level of digestible M+C, should be ensured; only in good conditions a
 partial replacement of the total methionine is a recommended and safe strategy.

DOSAGE RECOMMENDATION

RUMINANTS

DOSAGE RECOMMENDATION IN THERMONEUTRAL CONDITIONS (UP TO 21°C):

		Dosage recommendation in g/head/day	Nutritional value of betaine in g/head/day
Dairy cattle – moderate milk yield <35 kg milk/day	ActiBeet®	20.8-41	20-40
Dairy cattle – high milk yield > 35 kg milk/day	ActiBeet®	41-62.5	40-60
Beef cattle	ActiBeet®	20.8-32	20-30
Small ruminants – sheep and goats	ActiBeet®	4.2	4

DOSAGE RECOMMENDATION FOR HOT CLIMATE – HEAT STRESS CONDITIONS:

		Dosage recommendation in g/head/day	Nutritional value of betaine in g/head/day
Dairy cattle – moderate milk yield <35 kg milk/day	ActiBeet®	10.5-20.8	10-20
Dairy cattle – high milk yield > 35 kg milk/day	ActiBeet®	26-37.5	25-36
Beef cattle	ActiBeet®	10.5-20.8	10-20
Small ruminants – sheep and goats	ActiBeet®	2.1	2

DOSAGE RECOMMENDATION

		Inclusion rate in kg/t of finished feed	Nutritional value of betaine in mg/kg of finished feed
Aquaculture	ActiBeet®	2 - 10	2000-10.000

> Major Aqua Species: rainbow trout respectively salmon, tilapia and shrimps;

NATURAL BETAINE VS SYNTHETIC BETAINE

NATURAL BETAINE vs. SYNTHETIC BETAINE HCL

• Betaine HCL on the market consists only of approx. 72% betaine content

NATURAL BETAINE, BETAINE HCL AND CHOLINE CHLORIDE

Trimethylamines (TMA) - natural products contain very low TMA

- TMA content in synthetic products > 200 ppm than permitted
- show differences between products & batches

TMA CONTENT

- are highly corrosive in nature
- can cause toxicity in birds
- it causes sloughing of the intestinal mucosa
- malabsorption reduced nutrient utilization
- creates discomfort to the respiratory tract
- restricted feeding
- reduced production performance

Source: Engormix

NATURAL BETAINE, BETAINE HCL AND CHOLINE CHLORIDE

Quality varies among Choline Chloride samples

TMA CONTENT

- 18 samples from 25 are not achieve the declared choline level
- 7 samples from 25 are showing high or very high TMA levels: 13450 mg/ kg

		Choline content		TMA	Salts				
sample#	Ccgrade	CC	CC	TMA	NH4	Ca	К	Na	Mg
Test Method		IC	CI	IC	IC	IC	IC	IC	IC
		%	%	mg/kg	%	%	%	%	%
Specification		59 -61	59 -61	< 400	< 0.05	< 0.5	< 0.3	< 0.3	< 0.3
EU leg. 2002/32									-
C-01	CC60	35.00	80.00		16				
C-02	CC60	50.20	59.20	< 25	< 0.05	0.80	< 0.3	< 0.3	< 0.3
C-03	CC60	52.10	60.10	65	< 0.05	< 0.3	0.41	< 0.3	< 0.3
C-04	CC60	52.50	59.90	85	< 0.05	< 0.3	0.46	< 0.3	< 0.3
C-05	CC60	28.50	64.60	2110	< 0.05	0.76	7.8	1.3	< 0.3
C-06	CC60	54.30	61.00	125	< 0.05	0.75	0.41	< 0.3	< 0.3
C-07	CC60	55.40	60.40	131	< 0.05	0.80	0.39	< 0.3	< 0.3
C-08	CC60	23.70	72.10	< 25	3.5-3.9	1.57	< 0.3	< 0.3	< 0.3
C-09	CC50	46.60	53.40	13450	0.29	< 0.3	0.41	< 0.3	< 0.3
C-10	CC50	45.70	52.90	13400	0.31	< 0.3	0.43	< 0.3	< 0.3
C-11	CC50	17.50	47.00	7675	< 0.05	0.45	0.31	5.4	< 0.3
C-12	CC50 (??)	54.00	51.60	275	< 0.05	< 0.3	0.24	< 0.3	< 0.3
C-13	CC50	50.40	50.30	60	< 0.05	0.38	0.65	< 0.3	< 0.3
C-14	CC50	48.60	47.90	< 25	0.36	< 0.3	< 0.3	< 0.3	< 0.3
C-15	CC50 (??)	58.60	58.90	50	< 0.05	< 0.3	2.37	< 0.3	< 0.3
C-16	CC50	19.30	52.60	3040	0.12	4.1	0.43	1.3	< 0.3
C-17	CC50	50.20	50.30	110	< 0.05	< 0.3	0.22	< 0.3	< 0.3
C-18	CC50	45.60	47.10	< 25	< 0.05	< 0.3	0.5	< 0.3	< 0.3
C-19	CC50	50.90	50.20	420	0.23	< 0.3	< 0.3	< 0.3	< 0.3
C-20	CC50	47.10	48.80	21	< 0.05	< 0.3	0.37	< 0.3	< 0.3
C-21	CC60	57.70	59.00	59	< 0.05	< 0.3	< 0.3	< 0.3	< 0.3
C-22	CC60	58.50	60.70	61	< 0.05	< 0.3	< 0.3	< 0.3	< 0.3
C-23	CC60	57.90	59.60	< 25	nd	nd	nd	nd	nd
C-24	CC60	54.40	59.40	615	nd	nd	nd	nd	nd
C-25	CC60	57.80	58.80	< 25	nd	nd	nd	nd	nd
O-03	CC60	18.7	88.5	1745	4.6-4.1	< 0.3	< 0.3	< 0.3	< 0.3

52 Sunrise Park Rd., New Hampton, NY 10958 • ph: 800-780-9233 • fx: 845-326-5615 • www.balchem.com • www.cholinechloride.com

NATURAL BETAINE, BETAINE HCL AND CHOLINE CHLORIDE

EFSA Journal 2012- the "Scientific Opinion on the safety and efficacy of aliphatic and aromatic amines: 3-methylbutylamine, trimethylamine and its salt":

The compounds under application are well **recognised as being corrosive** to the **eye** and **strongly irritant** or corrosiv to the **skin** and known irritant to the respiratory tract.

For trimethylamine and its salt the proposed high use level (5 mg/kg feed) is safe for all animal species with a margin of safety ranging between 3 and 15.

Prüfbericht			Seite 1 von 1
Kunden-Nr.: Analysen-Nr.: Beginn der Prüfung: Befindlich in: Probenart: Bezeichnung:	849503 31 16 000881 12.01.2016 Glas Sonstige Proben Cholinchlorid	Eingangsdatum: Ende der Prüfung:	12.01.2016 26.01.2016
		Ergebnis in der Originalsubstan	z
Trimethylamin Methode: §64 LFGB L 10.00 SKAMMER MAUTHAG Dr. Egert Tostitutsleiter 102 N ³⁵)-4; #5	649 mg/kg	

	祝란	EARCH & INNOVATION CENTER GAILT	O	denburg, 06.09.2
				Berichts-Versio
Kunden-Nr.:	50160337	Probeneingang:	26.08.2016	
Auftrags-Nr.:	398489	Untersuchungsbeginn:	26.08.2016	
Proben-Nr.:	16FU007667	Untersuchungsende:	06.09.2016	
Probenart:	Vitamine und Provita	ovitamine		
Befindlich in:	Polyflasche			
Bezeichnung:	Probe 1: Cholinchlori	d - flüssig		
Probenehmer:	durch Auftraggeber			
		Originalsubstanz		
Trimethylamin Methoda: ASUL 10.00.4: 1988-12: #5: #6		1011 mc	g/kg	
Trimethylamin Methode: ASU L 10,00-4; 1984	8-12: #5: #6			
Trimethylamin Methode: ASU L 10.00-4; 198 Schwefel (S) Methode: BVL F 0096; 2013-0	8-12; #5; #6 4	<0,02 %		

<u>.úfbericht</u>			Ol	denburg, 06.09.2016
				Seite 1 von 1
Kunden-Nr.: Auftrags-Nr.: Proben-Nr.: Probenart: Befindlich in: Bezeichnung:	50160337 398489 16FU007668 sonstige Zusatzstoffe Röhrchen Probe 2: Betain HCL - k	Probeneingang: Untersuchungsbeginn: Untersuchungsende: kristallin	26.08.2016 26.08.2016 06.09.2016	Berichts-Version: 1
Probenehmer:	durch Auftraggeber			
		Ergebnis in der Originalsubstanz		
Trimethylamin	1000 10.45.45	1732 mg	g/kg	
Methode: ASU L 10.00-4; 1988-12; #5; #6 Schwefel (S) Methode: BVL F 0096; 2013-04		<0,05 %		
Im Auftrag Dr. Michael Egert Institutsleiter	ALL TANK TO THE SCHART			

<u>Prüfbericht</u>			Seite 1 von 1
Kunden-Nr.: Analysen-Nr.:	849503 31 16 000878	Eingangsdatum:	12.01.2016
Beginn der Prüfung: Befindlich in: Probenart: Bezeichnung:	12.01.2016 Dose Melasse Betainmelasse - Muster 2	Ende der Prüfung:	26.01.2016
		Ergebnis in der Originalsubstanz	
Trimethylamin Methode: §64 LFGB L 10.00)-4; #5	20,2 mg/kg	
DE Egent			

ACTIBEET

NATURAL vs. SYNTHETIC BETAINE

	ActiBeet®	Betaine hydrochloride (HCl)/Cholinechloride
Production process	Natural from sugar beet	Synthetic chemical
Residues	Ţ	ſ
Trimethylamines (TMA) content	20 – 25 mg/kg	> 200 – 1730 mg/kg
Chloride content and pH level=> Corrosivity	0.03 %; pH 6,7-10=> no corrosivity	> 14.5 %; pH 1-5=> high corrosivity
Water solubility	Î	Ţ
Osmoprotection	Ŷ	Ţ

WHY ADDING ACTIBEET® ?

- ✓Natural product not chemically synthesised
- ✓ Labeling "NATURAL" is possible
- ✓ Suitable for organic feed production
- ✓ Multi-species applications
- ✓ Non- aggressive, non- corrosive
- ✓Heat stable

F R U I T STARCH S U G A R

The natural upgrade

THANK YOU FOR YOUR ATTENTION!